Prosthetic Foot Design

Daniel Rihs
Ivan Polizzi
Victorian University of Technology
REHAB Tech- Monash Rehabilitation Technology Research Unit assume no liability for any claim of adverse effects resulting from misapplication of the information presented here in. While every effort is made to ensure the accuracy of the guide no responsibility or liability will be taken for any inaccuracies.

REHABTech is finance and supported by

[Commonwealth Department of Veterans’ Affairs]

In collaboration with

[Monash University]

© Copyright 2001
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher.
Requests for permission to make copies of any part of the work should be addressed to:

REHAB Tech- Monash Rehabilitation Technology Research Unit
C/- C.G.M.C.
260 - 294 Kooyong Road
CAULFIELD VIC 3162
AUSTRALIA
Email rehab.tech@eng.monash.edu.au
SEATTLE NATURAL FOOT

Force [N] vs Time [s]

- Peak force: 841.2099 N at 0.196 s
- Peak force: 457.9218 N at 0.596 s
- Force level below 100 N after 0.628 s
$y = 400.35x^3 - 544.55x^2 - 737.49x + 1018.1$
Anknat.tbd

\[y = -179.52x^4 + 913.27x^3 - 1267.5x^2 - 97.027x + 859.36 \]

![Graph showing a curve with a polynomial function](image-url)
SEATTLE NATURAL FOOT

Ankle Configuration

Time [s]

Force [N]

0 100 200 300 400 500 600 700 800

0 0.1 0.14 0.504 0.552

689.4127

408.5877

Q:\PROJECTS\FEET\FEETDATA.DOC
$y = 428.13x^4 - 925.2x^3 + 742.48x^2 - 918.92x + 784.26$