Off campus distributed learning, although adaptive to student needs, suffers from the tyranny of distance. Students can feel isolated without the stimulation of face-to-face teaching. Additionally, it can be difficult to integrate students who are on campus with those who are off campus. Online simulations and role-plays provide an effective form of group learning (Freeman and Capper 1999; Naidu, Ip et al. 2000). Most simulations in the literature consist of small group role-plays, where students are provided with a scenario and take on ‘roles’. They ‘act out’ their roles through a series of structured encounters using email and discussion forums to simulate meetings, phone conversations, letters and social gatherings.

This SIF funded project is in the process of creating two templates for online simulations and role-plays. These are targeted at postgraduate coursework education. The first template is for a scenario-based role-play where students examine the social and organisational issues surrounding a particular ‘real world’ situation. The second template is problem-oriented, where students consider a problem in a particular ‘real world’ context and then discuss its impact.

Simultaneously we are also developing two simulations and role-plays, which are iteratively enhancing the template design. These are developed for shared teaching between subjects in the Masters of Information Management and Systems (Faculty of Information Technology) and the Graduate Diploma of Health Informatics (Faculty of Medicine). The first is based on the scenario of developing a knowledge management system for an undergraduate medical curriculum. Students are given a range of roles that have varying agendas about how the medical curriculum should be managed. They are then given a range of tasks, including providing comments on possible solutions. Students are learning not only about knowledge management systems but also about the key role that group work and organisational issues have in determining the success of information management systems.

The second ‘problem-oriented’ simulation is based around teaching students about a simple decision support system in the context of health care. A historical example was taken from the literature, which used a technique known as a decision tree to determine whether or not a patient should have an amputation. Students are given readings about decision trees and medical decision-making. They then simulate a decision tree, by calculating whether a particular patient should have an amputation or not. After this, they use discussion forums to consider the limitations and possible benefits of implementing a quantitative system in this type of inherently subjective medical decision-making.

Both templates will be implemented in WebCT and will be used in teaching in September 2003. Evaluations will be conducted and used to further enhance the templates and additional simulation and role-play development for 2004. We hope that the templates will be available for general use in early 2004 after evaluation of the simulation and role-plays.
References


Copyright © 2003 Margaret Bearman.

This article may be used by educational institutions and non-profit organisations for the purposes of research and teaching provided appropriate citation and reference are included. The article must not be modified. Any reproduction of this article must include this copyright statement. The copyright owners also permit Monash University to publish this article on the World Wide Web (prime sites and mirrors) and in CD-ROM format within the EET 2003 conference proceedings. Any other usage is prohibited without the express permission of the copyright owners.