units

TRC3200

Faculty of Engineering

print version

This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

Faculty

Engineering

Coordinator(s)

tba (Clayton); Dr Madhavan Shanmugavel (Malaysia)

Offered

Clayton

  • First semester 2016 (Day)

Malaysia

  • First semester 2016 (Day)
  • Second semester 2016 (Day)

Synopsis

Instruction on the basics of dynamics of mechatronic systems, incorporating electromagnetics into advanced dynamics analysis via D'Lambert's principle, Hamiton's equations and the virtual power (Jourdain/Kane) method. Focus on applications of dynamics in mechatronics, with kinematics and dynamics of robotic structures, magnetoelectromechanical transducers (motors, speakers, vibration sensors, and so on). Consideration of the inevitable and critical consequences of nonlinearities in dynamic response, including limit cycles and Poincar maps and flows. Reinforcement of concepts using computer analysis on simple mechatronic systems.

Outcomes

Students are to gain the ability to model the dynamics of systems incorporating mechanical, electrical, magnetic, and other forms of energy storage and interaction, with consideration of the consequences of nonlinear behaviour. Computational work will provide the student with a reinforced understanding of mechatronic dynamics.

Assessment

Examination (3 hours): 70%
Laboratory work: 20%
Written assignments:10%.

Students are required to achieve at least 45% in the total continuous assessment component and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.

Workload requirements

3 hours lectures, 3 hours laboratory/tutorial classes and six hours of private study per week

See also Unit timetable information

Chief examiner(s)

Prerequisites

Prohibitions