units

TRC3200

Faculty of Engineering

Undergraduate - Unit

This unit entry is for students who completed this unit in 2013 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

To find units available for enrolment in the current year, you must make sure you use the indexes and browse unit tool in the current edition of the Handbook.

LevelUndergraduate
FacultyFaculty of Engineering
OfferedClayton First semester 2013 (Day)
Sunway First semester 2013 (Day)
Sunway Second semester 2013 (Day)
Coordinator(s)tba (Clayton); Dr Madhavan Shanmugavel (Sunway)

Synopsis

Instruction on the basics of dynamics of mechatronic systems, incorporating electromagnetics into advanced dynamics analysis via D'Lambert's principle, Hamiton's equations and the virtual power (Jourdain/Kane) method. Focus on applications of dynamics in mechatronics, with kinematics and dynamics of robotic structures, magnetoelectromechanical transducers (motors, speakers, vibration sensors, and so on). Consideration of the inevitable and critical consequences of nonlinearities in dynamic response, including limit cycles and Poincar maps and flows. Reinforcement of concepts using laboratory experiments and computer analysis on simple mechatronic systems.

Outcomes

Students are to gain the ability to model the dynamics of systems incorporating mechanical, electrical, magnetic, and other forms of energy storage and interaction, with consideration of the consequences of nonlinear behavior. Experimental and computational work will provide the student with a reinforced understanding of mechatronic dynamics.

Assessment

Examination (3 hours): 70%
Laboratory work: 20%
Written assignments:10%.

Chief examiner(s)

Contact hours

3 hours lectures, 3 hours laboratory/tutorial classes and six hours of private study per week

Prerequisites