units

MSC1010

Faculty of Science

Skip to content | Change text size
 

print version

Monash University Handbook 2010 Undergraduate - Unit

6 points, SCA Band 0 (NATIONAL PRIORITY), 0.125 EFTSL

LevelUndergraduate
FacultyFaculty of Science
OfferedClayton First semester 2010 (Day)
Clayton Second semester 2010 (Day)
Coordinator(s)Associate Professor Chris Davies

Synopsis

This unit consists of three components broadly summarised as follows: Key concepts in the design, selection and application of materials; attributes such as stiffness (modulus), strength, toughness, chemical stability, electrical, magnetic, and thermal properties will be explained in terms of atomic bonding, crystal defects, polycrystalline microstructure and material flaws; case studies will include a broad range of materials such as carbon nano tubes, microchips, reinforced concrete, biomaterials, suspension bridge, and aerospace components, all used in a diverse range of materials applications.

Objectives

On successful completion of this subject students will be able to: appreciate the influence of atomic structure, bonding and nano/microstructures have on some physical properties; have an understanding of different materials responses to forces and stresses; have an understanding of the basic mechanical properties, principally elastic modulus and yield stress, and be able to use these as design criteria; be familiar with processes occurring during plastic deformation and to draw upon these concepts in order to know how to strengthen the material; know how to tailor the mechanical properties of a polymeric material using control over crystallinity and the glass transition; understand the role of composite materials in engineering and their responses to applied stresses; understand the processes involved during fracture and have a broad understanding of how fracture can be avoided by appropriate selection of materials and design; have a basic understanding of the thermal, electrical and magnetic properties of materials in terms of the atomic and electronic characteristics of materials and to use these criteria for material selection; understand the processes of corrosion and degradation in the environment and to draw upon these to increase the lifetime through appropriate protection and material selection; be able to select an appropriate material for a given application based on the above points; appreciate the socio-political and sustainability issues influencing material selection; have become familiar with the resources of a library for acquiring information of specific interest to a Materials Scientist; have gained basic laboratory skills applied to study the microstructure and physical properties of materials; have an ability to communicate within a team in carrying out laboratory work; and have an ability to keep accurate laboratory records and to prepare a formal report on an experiment.

Assessment

Examination (2hrs): 50%
Laboratory work: 20%
Assignments: 10%
Tests: 20%

Chief examiner(s)

Professor George Simon

Contact hours

Three 1-hour lectures/tutorial classes, one 2-hour laboratory class and 7 hours private study per week

Prerequisites

VCE Mathematical Methods units 3 and 4

Co-requisites

MTH1010, if pre-requisites are not satisfied

Prohibitions

ENG1501, ENG1050