units

MEC3455

Faculty of Engineering

Skip to content | Change text size
 

print version

Monash University Handbook 2010 Undergraduate - Unit

6 points, SCA Band 2, 0.125 EFTSL

LevelUndergraduate
FacultyFaculty of Engineering
OfferedClayton First semester 2010 (Day)
Sunway Second semester 2010 (Day)
Coordinator(s)W K Chiu

Synopsis

This unit aims to develop an understanding of the analytical methodologies used in strength and stiffness assessment of engineering structures and components. It allows students to translate real-world forces into abstract form for engineering modelling of a range of common problems found in industry and gain knowledge of the relationship between analysis and design. Students will be exposed to a wide range of analytical tools and modeling philosophies.

Objectives

Understanding of the relevance of strength and stiffness aspects of engineering structures and components.
Appreciation of a range of modeling tools and analytical methodologies.
Understanding of the role of solid mechanics in engineering analysis and design.
Knowledge and skills to translate real-world forces into abstract form for engineering modeling.
Understand the concept of loads and load paths.
Knowledge of alternative analytical tools to solve similar problems.
Apply and contrast a range of analytical tools.
Calculate elastic and inelastic stresses and deflections in simple and compound beams.
Calculate stresses and displacements in pressure vessels.
Analyse torsion of non-circular cross-sections.
Analyse stresses and deflections of flat plates.
Analyse shear stresses in thin-walled sections.
Appreciate the relationship between solid mechanics and engineering design.
Confidence in evaluating new engineering problems and formulating original solutions.

Assessment

Assignments: 10%
Laboratory reports: 20%
Examination (3 hours): 70%. Students must achieve a pass grade in both the continuous assessment and examination components to gain an overall Pass grade in the unit.

Chief examiner(s)

Professor Mark Thompson

Contact hours

3 hours lectures, 3 hours practice sessions/laboratories (this may alternate with 2 hours lectures and 4 hours practice sessions/laboratories) and 6 hours of private study per week

Prerequisites

(MEC2402 and MEC2403 and MEC2406) or MAE2911 or MAE2921 or MEC2460 or MEC2470