# ENG2091 - Advanced engineering mathematics A

## 6 points, SCA Band 0 (NATIONAL PRIORITY), 0.125 EFTSL

### Undergraduate Faculty of Engineering

#### Leader(s): T Lun, K T Lee (M'sia)

#### Offered

Clayton First semester 2009 (Day)

Clayton Second semester 2009 (Day)

Sunway First semester 2009 (Day)

#### Synopsis

Multivariable calculus: double and triple integrals, parametric representation of lines and curves in three dimensional space, use of Cartesian, cylindrical and spherical coordinates, surface and volume integrals, the operations of the gradient, divergence and curl. Ordinary differential equations: solve systems of linear differential equations and the 2nd order Sturm-Liouville type problems. Partial differential equations: the technique of separation of variables and the application of this technique to the wave equation, the heat equation and Laplaces equation.

#### Objectives

On completing this unit, students will be able to represent curves parametrically solve line integrals on these curves; solve double and triple integrals in Cartesian, cylindrical and spherical coordinates; represent surfaces parametrically and solve flux integrals across these surfaces; perform the operations of the gradient, divergence and curl, use these operations in the solution of surface and volume integrals through the Divergence theorem and Stokes theorem; solve systems of simple ordinary differential equations; establish the eigenvalues of these systems; identify and solve 2nd order linear Sturm Liouville differential equations; represent a periodic function with a Fourier series and identify even and odd series expansions; solve elementary partial differential equations through the method of separation of variables; apply this technique to the wave equation, the heat equation and Laplaces equation; classify 2nd order linear partial differential equations as elliptic, parabolic or hyperbolic.

#### Assessment

Assignments and test: 30%

Examination (3 hours): 70%

#### Contact hours

3 hours of lectures, 2 hours practice classes and 7 hours of private study per week

#### Prerequisites

#### Prohibitions

MAT2731, MAT2901, MAT2902, MAT2911, MAT2912, MAT2921, MAT2922, MTH2010, MTH2032